Devoir commun - Révisions

FONCTIONS - DERIVATIONS

2021 - DC 2 - Dérivation 1

Soit f la fonction définie sur [-7,7] par $f(x) = \frac{3x+4}{x^2+1}$.

- 1. Montrer que f est dérivable sur [-7,7] et que $f'(x) = \frac{-3x^2 8x + 3}{(x^2 + 1)^2}$
- 2. Dresser le tableau de variations de f en justifiant.
- 3. En déduire (aucune justification n'est attendue) :
 - (a) le minimum de la fonction f sur l'intervalle [-7, 7].
 - (b) le maximum de la fonction f sur l'intervalle [-7, 7].
 - (c) le minimum de la fonction f sur l'intervalle [0; 7].
 - (d) le maximum de la fonction f sur l'intervalle [-7; 0].
 - (e) le nombre de solutions de l'équation f(x) = 0 dans l'intervalle [-7, 7].

2021 - DC 2 - Dérivation 1 - Corrigé

Soit f la fonction définie sur [-7, 7] par $f(x) = \frac{3x+4}{x^2+1}$.

1. Montrer que
$$f'(x) = \frac{-3x^2 - 8x + 3}{(x^2 + 1)^2}$$

f est de la forme $\frac{u}{v}$ avec u = 3x + 4 et $v = x^2 + 1$.

On a donc :
$$u' = 3$$
 et $v' = 2x$.

On a donc:
$$u' = 3$$
 et $v' = 2x$.
Ainsi $f'(x) = \frac{u'v - v'u}{v^2} = \frac{3 \times (x^2 + 1) - 2x \times (3x + 4)}{(x^2 + 1)^2} = \frac{-3x^2 - 8x + 3}{(x^2 + 1)^2}$

2. Dresser le tableau de variations de f en justifiant.

f' est le quotient de $-3x^2 - 8x + 3$, polynôme du second degré par $(x^2 + 1)^2$, qui est un carré donc toujours positif (même ici strictement positif).

f' sera donc du même signe que $-3x^2 - 8x + 3$, c'est-à-dire du même signe que a = -3 excepté entre ses racines si elles existent.

$$\Delta = b^2 - 4ac = (-8)^2 - 4 \times (-3) \times 3 = 64 + 36 = 100 > 0.$$

Il y a donc deux racines:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{8 - 10}{-6} = \frac{1}{3}$$

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{8 + 10}{-6} = -3$$

On a alors sur \mathbb{R} tout entier :

x	$-\infty$	-3	$\frac{1}{3}$	$+\infty$
Signe de $f'(x)$	_	0	+ 0	_

Or l'étude de f(x) est faite sur [-7, 7], donc on obtient :

x	- 7	-3	$\frac{1}{3}$	7
Signe de $f'(x)$	-	0	+ 0	_
Variations de f	-0.34	-0,5	4,5	0,5

- 3. En déduire (aucune justification n'est attendue) :
 - (a) le minimum de la fonction f sur l'intervalle [-7, 7]. Le minimum de la fonction f sur l'intervalle [-7, 7] est -0,5 (atteint pour x = -3).

- (b) le maximum de la fonction f sur l'intervalle [-7;7]. Le maximum de la fonction f sur l'intervalle [-7;7] est 4,5 (atteint pour $x=\frac{1}{3}$).
- (c) le minimum de la fonction f sur l'intervalle [0;7]. f(0) = 4 Le minimum de la fonction f sur l'intervalle [0;7] est 0,5 (atteint pour x=7).
- (d) le maximum de la fonction f sur l'intervalle [-7;0]. f(0) = 4 Le maximum de la fonction f sur l'intervalle [-7;0] est 4 (atteint pour x=0).
- (e) le nombre de solutions de l'équation f(x) = 0 dans l'intervalle [-7, 7]. L'équation f(x) = 0 admet une unique solution dans l'intervalle [-7, 7].