TS_5 Devoir de révisions

TS 5 – Bacc. blanc cassé

Exercice 1 (5 points, pour les élèves suivant le cours de spécialité).

1. On considère l'équation $\mathscr E$:

$$109 x - 226 y = 1$$

où les inconnues x et y sont des entiers relatifs.

- (a) Déterminer le pgcd de 109 et 226. Que peut-on en déduire pour l'équation $\mathscr E$?
- (b) Montrer que l'ensemble des solutions de $\mathscr E$ est l'ensemble des couples de la forme $(-85+226\,k\,;-41+109\,k)$ où $k\in\mathbb Z$.
- (c) En déduire qu'il existe un unique entier naturel non nul d inférieur ou égal à 226 et un unique entier naturel e tels que 109 d = 1 + 226 e (on précisera les valeurs des entiers d et e).
- 2. Démontrer que 227 est un nombre premier.
- 3. On note \mathscr{A} l'ensemble des 227 entiers naturels a tels que $a \leq 226$.
 - (a) Pour tout entier $a \in \mathscr{A}$, on note f(a) le reste de la division euclidienne de a^{109} par 227. Expliquer pourquoi f(a) est un élément de \mathscr{A} . Que vaut f(0)? Que vaut f(1)?
 - (b) Pour tout entier $a \in \mathcal{A}$, on note g(a) le reste de la division euclidienne de a^{141} par 227. Que vaut g(0)? Que vaut g(1)? Vérifier que g(f(0)) = 0 et que g(f(1)) = 1.
 - (c) Montrer que pour tout $a \in \mathcal{A}$, $a \neq 0$, on a :

$$a^{226} \equiv 1 \pmod{227}$$

Énoncer le théorème utilisé.

- (d) En utilisant la question 1c, établir la preuve que g(f(a)) = a pour tout $a \in \mathcal{A}$.
- 4. Dans l'espace muni d'un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$, on considère la surface Σ d'équation :

$$x^2 + y^2 = \frac{1}{51\,076}z^2$$

- (a) Identifier cette surface Σ .
- (b) Quelle est l'intersection de la surface Σ avec le plan d'équation x=0?
- (c) Parmi les points de cette intersection existe-t-il des points dont les coordonnées sont des entiers naturels appartenant à l'ensemble A défini à la question 3? Si oui, lesquels?

Exercice 1 (5 points, pour les élèves ne suivant pas le cours de spécialité).

Le plan complexe est rapporté à un repère orthonormal direct $(O; \vec{u}, \vec{v})$ (unité graphique : 2 cm).

- 1. Résoudre dans \mathbb{C} l'équation : $z^2 2\sqrt{3}z + 4 = 0$.
- 2. On pose $a = \sqrt{3} + i$ et $b = \sqrt{3} i$.

Écrire a et b sous forme exponentielle et placer les points A et B d'affixes respectives a et b.

3. (a) Soit r la rotation de centre O et d'angle $\frac{\pi}{3}$.

Calculer l'affixe a' du point A' image du point A par r.

Écrire a' sous forme algébrique et placer A' sur la figure précédente.

2006-2007 page 1/4

 TS_5 Devoir de révisions

- (b) Soit h l'homothétie de centre O et de rapport $-\frac{3}{2}$. Calculer l'affixe b' du point B' image du point B par h (on donnera b' sous sa forme algébrique). Placer B' sur la figure précédente.
- 4. Soit C le centre du cercle $\mathscr C$ circonscrit au triangle OA'B' et R le rayon de ce cercle. On désigne par c l'affixe du point C.
 - (a) Justifier les égalités suivantes :

$$\mathcal{E}_a: c\bar{c} = R^2$$

$$\mathcal{E}_b: (c-2i)(\bar{c}+2i) = R^2$$

$$\mathcal{E}_c: \left(c + \frac{3\sqrt{3}}{2} - \frac{3}{2}i\right)\left(\bar{c} + \frac{3\sqrt{3}}{2} + \frac{3}{2}i\right) = R^2$$

(b) En déduire :

$$c - \bar{c} = 2i$$

puis:

$$c + \bar{c} = -\frac{4\sqrt{3}}{3}$$

(c) En déduire l'affixe du point C et la valeur de R.

Exercice 2 (7 points).

Dans tout le problème, le plan est rapporté à un repère orthonormal $(O; \vec{i}, \vec{j})$ (unité graphique : 5 cm).

Partie A

On considère la fonction f_1 définie sur $[0; +\infty[$ par

$$f_1(x) = xe^{-x^2}$$

et on appelle \mathscr{C}_1 sa courbe représentative.

- 1. Calculer la limite de f_1 en $+\infty$. Interpréter graphiquement ce résultat.
- 2. Étudier les variations de f_1 .
- 3. On appelle Δ la droite d'équation y = x. Déterminer la position de \mathscr{C}_1 par rapport à Δ .
- 4. Tracer \mathscr{C}_1 et Δ .

Partie B

On désigne par n un entier naturel non nul et on considère la fonction f_n définie sur $[0; +\infty[$ par

$$f_n(x) = x^n e^{-x^2}.$$

On note \mathscr{C}_n la courbe représentative de f dans le repère $(O; \overrightarrow{i}, \overrightarrow{j})$.

- 1. Montrer que, pour tout entier $n \ge 1$, f_n admet un maximum pour $x = \sqrt{\frac{n}{2}}$. On note α_n ce maximum.
- 2. On appelle S_n le point de \mathscr{C}_n d'abscisse $\sqrt{\frac{n}{2}}$. Placer S_1 , S_2 sur la figure.
- 3. Montrer que, pour tout n, \mathscr{C}_n passe par S_2 .

2006-2007 page 2/4

 TS_5 Devoir de révisions

4. Soit la fonction g définie sur]0; $+\infty[$ par :

$$g(x) = \exp\left(-\frac{x}{2}\left[1 - \ln\left(\frac{x}{2}\right)\right]\right)$$

- (a) Étudier les variations de g.
- (b) Montrer que, pour tout entier $n \ge 1$, on a :

$$\alpha_n = g(n)$$

(c) En déduire que tout point S_n a une ordonnée supérieure à celle de S_2 .

Exercice 3 (4 points).

Un récipient contient un gaz constitué de deux sortes de particules : 75% de particules A et 25% de particules B. Les particules sont projetées sur une cible formée de deux compartiments K_1 et K_2 .

L'expérience est modélisée de la façon suivante :

- une particule au hasard parmi les particules de type A entre dans K_1 avec la probabilité $\frac{1}{3}$ et dans K_2 avec la probabilité $\frac{2}{3}$;
- une particule au hasard parmi les particules de type B entre dans chacun des compartiments avec la probabilité $\frac{1}{2}$.

Partie A

1. Soit une particule au hasard.

Déterminer la probabilité de chacun des évènements suivants :

 A_1 : « la particule isolée est de type A et elle entre dans K_1 »,

 A_2 : « la particule isolée est de type A et elle entre dans K_2 »,

 B_1 : « la particule isolée est de type B et elle entre dans K_1 »,

 B_2 : « la particule isolée est de type B et elle entre dans K_2 »,

 C_1 : « la particule entre dans K_1 »,

 C_2 : « la particule entre dans K_2 ».

2. On procède cinq fois de suite et de façon indépendante à l'épreuve décrite en introduction.

Le nombre de particules étant très grand, on admettra que les proportions 75 % et 25 % restent constantes.

Calculer la probabilité de l'évènement E : « il y a exactement deux particules dans K_2 ».

Partie B

Un récipient contient le gaz décrit précédemment. Les particules A sont radioactives et se transforment spontanément : chaque particule A donne en se transformant une particule B.

On note p(t) la proportion de particules A dans le gaz. Ainsi, à l'instant t = 0, on a p(0) = 0, 75.

Plus généralement, si t est exprimé en années, on a $p(t) = 0,75e^{-\lambda t}$, où λ est une constante réelle.

La demi-vie (temps au bout duquel le nombre de particules restantes est la moitié du nombre initial) des particules de type A est égale à 5 730 ans.

- 1. Calculer λ (on prendra une valeur approchée décimale à 10^{-5} près par défaut).
- 2. Déterminer la valeur de t pour laquelle il y aura autant de particules de type A que de particules de type B (on arrondira à l'unité).

2006-2007 page 3/4

 TS_5 Devoir de révisions

Exercice 4 (4 points).

L'objet de l'exercice est l'étude de deux modèles de croissance des racines d'un plan de haricot.

Le temps t est exprimé en jours et la longueur L des racines en millimètres.

Les résultats expérimentaux sont donnés dans le tableau suivant :

t	0	2	4	6	8	9	10
L	1	4	37	59	80	82	83

Partie A

On suppose que la fonction de croissance à l'instant t est proportionnelle à la longueur de la racine (ici f(t)) et que dans le cas considéré le coefficient de proportionnalité est 0,9.

La fonction f est donc solution de l'équation différentielle y' = 0.9 y.

- 1. Sachant que f(0) = 1, déterminer la fonction f.
- 2. Représenter dans un repère les points de coordonnées (t;L) du tableau et la fonction f.

Partie B

Le modèle précédent ne pouvant s'appliquer que sur une courte période, on définit un autre modèle dans lequel la fonction de croissance vérifie l'équation différentielle \mathcal{E}_1 :

$$y' = 0.9 \, y - \frac{0.9}{85} \, y^2$$

On note \mathcal{E}_2 l'équation différentielle :

$$y' + 0.9y = \frac{0.9}{85}$$

1. Soit g une fonction dérivable et strictement positive sur $[0; +\infty[$. Montrer que :

$$g$$
 est solution de $\mathscr{E}_1 \Longleftrightarrow \frac{1}{g}$ est solution de \mathscr{E}_2

- 2. En déduire la solution g de \mathscr{E}_1 telle que $g(0) = \frac{85}{86}$
- 3. Étudier les variations de g.
- 4. Déterminer $\lim_{+\infty} g$.
- 5. Représenter g sur le graphique de la partie A.

2006-2007 page 4/4