TERMINALES SCIENTIFIQUES

BACCALAUREAT BLANC

EPREUVE DE MATHÉMATIQUES

>>> Durée: 4 heures. <<<

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies – La calculatrice est autorisée.

Les candidats auront à traiter 4 exercices.

L'exercice 2 est différent pour les candidats ayant suivi l'enseignement de spécialité.

EXERCICE I (5 points) VRAI FAUX

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et donner une démonstration de la réponse choisie. (parfois un contre exemple suffit)
Toute réponse non justifiée ne sera pas prise en compte.

- Soit le nombre complexe $z = 1 i \sqrt{3}$
 - **Proposition 1**: « Si l'entier naturel n est un multiple de 3 alors z^n est un réel »
 - Soient f et g deux fonctions définies sur [0 ; $+\infty$ [, g ne s'annulant pas :
- $\frac{\mathbf{Proposition 2a}}{\mathbf{Proposition 2a}}: \text{ "Si } \lim_{x \to +\infty} f(x) = -\infty \text{ et } \lim_{x \to +\infty} g(x) = +\infty \text{ alors } \lim_{x \to +\infty} \frac{f(x)}{g(x)} = -1 \text{ "}$
 - Si f est une fonction définie sur [0; + ∞ [telle que $0 \le f(x) \le \sqrt{x}$ sur [0; + ∞ [, alors:
 - **Proposition 2b**: $\ll \lim_{x \to +\infty} \frac{f(x)}{x} = 0 \gg$
- On considère la suite (U_n) définie par $U_0 = 2$ et, pour tout entier naturel n, $U_{n+1} = \sqrt{7U_n}$
 - **Proposition 3**: « Pour tout entier naturel n, on a: $0 \le U_n \le 7$ »
- Proposition 4a: « L'ensemble des solutions de l'équation $x \ln x x = 0$ est : $\{0, e\}$ »
 - **Proposition 4b**: « L'ensemble des solutions de l'équation $(\ln x)^2 3\ln x 4 = 0$ est : $\{-e; e^4\}$ »
- Soit (V_n) une suite, et a un réel strictement positif.
 - On considère la suite (U_n) définie pour tout entier naturel n par $U_n = e^{-V_n} + 1$.
 - **Proposition 5a**: « Si $V_0 = \ln a$ alors $U_0 = 1 a$ »
 - **Proposition 5b**: « Pour tout entier naturel n, on a: $\ln(U_n) + V_n > 0$ »

EXERCICE II (5 points)

Candidats n'ayant pas suivi l'enseignement de spécialité

Le plan complexe est muni d'un repère orthonormé direct (o, \vec{u}, \vec{v}) d'unité graphique 2 cm.

On considère les points A, B et C d'affixes respectives $z_A = -2i$ $z_B = -\sqrt{3} + i$ et $z_C = \sqrt{3} + i$

- **1. a.** Écrire z_A , z_B et z_C sous forme exponentielle.
 - **b.** En déduire le centre et le rayon du cercle Γ passant par les points A, B et C.
 - **c.** Faire une figure et placer le point A, tracer le cercle Γ puis placer les points B et C.
- **2. a.** Écrire le quotient $\frac{z_B z_A}{z_C z_A}$ sous forme algébrique puis sous forme exponentielle.
 - **b.** En déduire la nature du triangle ABC.
- **3.** On note r la rotation de centre A et d'angle mesurant $\frac{\pi}{3}$ radians.
 - **a.** Montrer que le point O', image de O par r, a pour affixe $-\sqrt{3}-i$.
 - **b.** Démontrer que les points C et O' sont diamétralement opposés sur le cercle Γ .
 - **c.** Tracer l'image Γ ' du cercle Γ par la rotation r
 - **d.** Justifier que les cercles Γ et Γ ' se coupent en A et B.
- **4. a.** Déterminer l'ensemble (E) des points M d'affixe z tels que $|z| = |z + \sqrt{3} + i|$
 - **b.** Montrer que les points A et B appartiennent à (E).

EXERCICE II (5 points)

Candidats ayant suivi l'enseignement de spécialité

Pour tout entier n > 0, on définit la suite (S_n) par $S_n = \sum_{p=1}^n p^3 = 1^3 + 2^3 + ... + n^3$.

- 1. Soient a et b deux entiers naturels non nuls. Démontrer que si PGCD (a; b) = 1 alors PGCD $(a^2; b^2) = 1$.
- 2. Démontrer que, pour tout n > 0, on a : $S_n = \left(\frac{n(n+1)}{2}\right)^2$
- 3. On suppose dans cette question que n est pair. Soit k l'entier naturel non nul tel que n=2 k.
 - a) Démontrer que PGCD $(S_{2k}; S_{2k+1}) = (2^{k} + 1)^{2} PGCD (k^{2}; (k+1)^{2}).$
 - b) Calculer PGCD (k; k+1).
 - c) Calculer PGCD (S_{2k} ; S_{2k+1}).
- 4. On suppose dans cette question que n est impair. Soit k l'entier naturel non nul tel que n = 2 k + 1.
 - a) Démontrer que les entiers 2 k+1 et 2 k+3 sont premiers entre eux.
 - b) Calculer PGCD (S_{2k+1} ; S_{2k+2}).
- 5. Quels sont les entiers naturels n non nuls tels que S_n et S_{n+1} sont premiers entre eux ?

EXERCICE III (4 points)

L'espace est rapporté à un repère orthonormal $(O;\vec{i},\vec{j},\vec{k})$.

Soit (P) le plan d'équation 3x + y - z - 1 = 0 et (D) la droite dont une représentation paramétrique

est
$$\begin{cases} x = -t + 1 \\ y = 2t \\ z = -t + 2 \end{cases}$$
 où t désigne un nombre réel.

- 1. Démontrer que la droite (D) est incluse dans le plan (P).
- 2. Le point C(1; 3; 2) appartient-il au plan (P)? Justifier.
- 3. Soit (Q) le plan passant par le point *C* et orthogonal à la droite (D).
 - a. Déterminer une équation cartésienne du plan (Q).
 - b. Calculer les coordonnées du point *I*, point d'intersection du plan (Q) et de la droite (D).
 - c. Montrer que $CI = \sqrt{3}$.
- 4. Soit t un nombre réel et M_t le point de la droite (D) de coordonnées (-t+1; 2t; -t+2).
 - a. Vérifier que pour tout nombre réel t, $CM_t^2 = 6t^2 12t + 9$.
 - b. Montrer que CI est la valeur minimale de CM_t lorsque t décrit l'ensemble des nombres réels.

EXERCICE IV (6 points)

Partie 1

Soit g la fonction définie sur $[0; +\infty[$ par $g(x) = e^x - xe^x + 1$.

- 1. Déterminer la limite de g en $+\infty$.
- 2. Étudier les variations de la fonction g.
- 3. Donner le tableau de variations de g.
- 4. a. Démontrer que l'équation g(x) = 0 admet sur $[0; +\infty[$ une unique solution. On note α cette solution.
 - b. À l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
 - c. Démontrer que $e^{\alpha} = \frac{1}{\alpha 1}$.
- 5. Déterminer le signe de g(x) suivant les valeurs de x.

Partie 2

Soit A la fonction définie et dérivable sur $[0; +\infty[$ telle que $A(x) = \frac{4x}{e^x + 1}$.

- 1. Démontrer que pour tout réel x positif ou nul, A'(x) a le même signe que g(x), où g est la fonction définie dans la partie 1.
- 2. En déduire les variations de la fonction A sur $[0; +\infty[$.

Partie 3

On considère la fonction f définie sur $[0; +\infty[$ par $f(x) = \frac{4}{e^x + 1}$. On note (C) sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$. La figure est donnée ci-après. Pour tout réel x positif ou nul, on note :

M le point de (C) de coordonnées (x; f(x)), P le point de coordonnées (x; 0), Q le point de coordonnées (0; f(x)).

- 1. Démontrer que l'aire du rectangle OPMQ est maximale lorsque M a pour abscisse α .
- 2. Le point M a pour abscisse α . La tangente (T) en M à la courbe (C) est-elle parallèle à la droite (PQ)?

Dans cette question, toute trace de recherche, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

