I - INTERVALLE DE FLUCTUATION

Rappels de cours:

En classe de seconde

p est la proportion du caractère étudié au sein de la population.

Pour un échantillon de taille n, l'intervalle de fluctuation au seuil de 95 % est :

$$\left[p-\frac{1}{\sqrt{n}};p+\frac{1}{\sqrt{n}}\right].$$

Conditions : $0.2 \le p \le 0.8$ et $n \ge 25$

En classe de première

On note X la variable aléatoire qui compte le nombre d'individus de l'échantillon présentant le caractère étudié. X suit la loi binomiale B (n, p).

Pour un échantillon de taille n, l'intervalle de fluctuation au

seuil de 95 % est :
$$\left[\frac{a}{n}; \frac{b}{n}\right]$$
,

où à et b sont les plus petits entiers tels que :

 $P(X \le a) > 0.025 \text{ et } P(X \le b) \ge 0.975.$

II -INTERVALLE DE FLUCTUATION ASYMPTOTIQUE D'UNE PROPORTION

<u>Propriété</u>

Soit X_n une variable aléatoire suivant une loi binomiale B (n, p);

Alors, pour tout α de] 0; 1 [, on a lim $P(F_n \in I_n) \ge 1 - \alpha$

où
$$I_n$$
 désigne l'intervalle $I_n = \left[p - u_\alpha \times \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + u_\alpha \times \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$

<u>Rappel</u>: |Le réel u_{α} a été défini par l'égalité $P(-u_{\alpha} \le T \le u_{\alpha}) = 1 - \alpha$, où T suit la loi $\mathcal{U}(0, 1)$.

$$P(-u_{\alpha} \le T \le u_{\alpha}) = 1 - \alpha \Leftrightarrow 2 P(T \le u_{\alpha}) - 1 = 1 - \alpha \Leftrightarrow P(T \le u_{\alpha}) = 1 - \frac{\alpha}{2}$$

Sinon, avec la calculatrice TI: $u_{\alpha} = \text{FracNormale} \left(1 - \frac{\alpha}{2}\right)$

$$u_{\alpha} = \text{FracNormale} \left(1 - \frac{\alpha}{2}\right)$$

Définition

L'intervalle $I_n = \left[p - u_\alpha \times \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + u_\alpha \times \frac{\sqrt{p(1-p)}}{\sqrt{n}} \right]$ est un intervalle de fluctuation

asymptotique au seuil de confiance $1 - \alpha$ de la variable fréquence F_n qui, à tout échantillon de taille n, associe la fréquence obtenue.

Ne pas oublier d'arrondir la borne inférieure par défaut et la borne supérieure par excès!

<u>cas particulier</u> (cas où $n \ge 30$, $np \ge 5$ et $n(1-p) \ge 5$)

$$\left[p-1,96\times\frac{\sqrt{p(1-p)}}{\sqrt{n}};p+1,96\times\frac{\sqrt{p(1-p)}}{\sqrt{n}}\right] \text{ est un intervalle de fluctuation asymptotique}$$

au seuil de confiance 0,95 de la fréquence F_n d'un caractère dans un échantillon de taille n.

Prise de décision à partir d'un échantillon

Dans une certaine population, on **suppose** que la proportion d'un certain caractère est *p*. La prise de décision consiste, à partir d'un échantillon de taille n, à valider ou non cette hypothèse faite sur la proportion *p*.

Pour ce faire:

- On calcule la fréquence observée f du caractère étudié.
- On détermine l'intervalle de fluctuation asymptotique I au seuil 0,95.
- On applique la règle de décision suivante :
- ♦ Si $f \in I$, alors on accepte l'hypothèse faite sur la proportion p.
- ◆ Si f ∉ I, alors on rejette l'hypothèse faite sur la proportion p, avec un risque de 5% de se tromper.

III - ESTIMATION

POPULATION MERE

Effectif N

Proportion p (*inconnue*) d'individus ayant une certaine propriété

ECHANTILLON

Effectif n

On calcule la **fréquence f**des individus ayant
cette propriété

 α seuil de risque.

<u>Propriété</u>

Soit X_n une variable aléatoire suivant la loi binomiale B (n, p) et $F_n = \frac{X_n}{n}$.

Alors, pour tout p de] 0; 1 [, l'intervalle $\left[F_n - \frac{1}{\sqrt{n}}; F_n + \frac{1}{\sqrt{n}}\right]$ contient, pour n assez grand,

la proportion p, avec une probabilité supérieure ou égale à 0,95.

INTERVALLE DE CONFIANCE D'UNE PROPORTION Définition

Soit f la fréquence observée d'un caractère dans un échantillon de taille $\mathbf n$,

extrait d'une population dans laquelle la proportion du caractère est p (inconnue) ;

$$f - \frac{1}{\sqrt{n}}$$
; $f + \frac{1}{\sqrt{n}}$ est un intervalle de confiance de la proportion inconnue p,

avec un niveau de confiance 0,95.

On utilise cet intervalle dès que $n \ge 30$, $n \times f \ge 5$ et $n \times (1-f) \ge 5$

Taille minimale de l'échantillon pour avoir une précision donnée

Avec un niveau de confiance de 0,95, l'amplitude de l'intervalle est $\frac{2}{\sqrt{n}}$. Si l'on souhaite

situer p dans un intervalle de longueur donnée L, alors on doit avoir $\frac{2}{\sqrt{n}} \le L$, soit $n \ge \frac{4}{L^2}$