Exo

CALCUL INTEGRAL - 3

Exercice 18 On considère la fonction f définie sur $\left[-\frac{1}{2}; \frac{1}{2}\right]$ par : $f(x) = \frac{8x^2 - 4}{4x^2 - 1}$

- 1°) Déterminer les réels a, b et c tels que, pour tout réel x de $\left] -\frac{1}{2}; \frac{1}{2} \right[$, $f(x) = a + \frac{b}{2x+1} + \frac{c}{2x-1}$
- 2°) Calculer l'intégrale $\int_0^{\frac{1}{4}} f(x) dx$.

Exercice 19 Soient a et b deux réels. On considère les fonctions f et F définies sur \mathbb{R} par :

$$f(x) = (x-1)e^{-x}$$
 et $F(x) = (ax+b)e^{-x}$

- 1°) Déterminer les réels a et b tels que F soit une primitive de f.
- 2°) En déduire $\int_0^{\ln 3} (x-1)e^{-x} dx$.

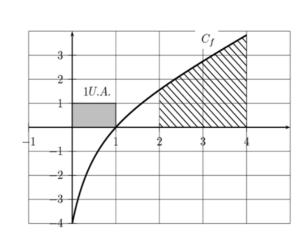
Exercice 20 Pour tout entier naturel n non nul, on pose : $I_n = \int_1^n e^{-t} dt$ Montrer que la suite (I_n) est croissante.

Exercice 21

- 1°) Calculer la valeur moyenne de la fonction cube entre -2 et 2 et faire une figure.
- 2°) Calculer la valeur moyenne de la fonction carrée entre -2 et 2 et faire une figure.

Exercice 22

On considère les fonctions f et F définies sur \mathbb{R} par : $f(x) = x \sin x$ et $F(x) = \sin x - x \cos x$


- 1°) Démontrer que F est une primitive de f.
- 2°) En déduire $\int_0^{\frac{\pi}{2}} x \sin x \, dx$.

Exercice 23

On considère la fonction f définie sur $]-1;+\infty[$ par :

$$f(x) = x - \frac{4}{\left(x+1\right)^2}.$$

Calculer la valeur moyenne de f entre 2 et 4.

